

### LEISTUNGSERKLÄRUNG DoP Nr. MKT-231 - de

- 1. Eindeutiger Kenncode des Produkttyps: MKT Einschlaganker E / ES
- 2. Typen-, Chargen- oder Seriennummer oder ein anderes Kennzeichen zur Identifikation des Bauprodukts gemäß Artikel 11 Absatz 4:

ETA-02/0020, Anhang A3 Chargennummer: siehe Verpackung

3. Vom Hersteller vorgesehener Verwendungszweck oder vorgesehene Verwendungszwecke des Bauprodukts gemäß der anwendbaren harmonisierten technischen Spezifikation:

| Produkttyp                         | wegkontrollierter Spreizanker                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Für die<br>Verwendung in           | ngerissenem Beton C20/25 - C50/60 (EN 206)                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Option                             | 7                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Belastung                          | statisch und quasi-statisch                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Material                           | Stahl verzinkt: nur in trockenen Innenräumen enthaltene Größen: E/ES M6x30, E/ES M8x30, E/ES M8x40, ES M10x30, E/ES M10x40, E/ES M12x50, E/ES M12x80, E/ES M16x65, E/ES M16x80, E M20x80                                                            |  |  |  |  |  |  |  |
|                                    | nichtrostender Stahl (Prägung A4): in Innen- und Außenbereichen ohne besonders aggressive Bedingungen enthaltene Größen: E/ES M6x30, E/ES M8x30, E/ES M8x40, E/ES M10x40, E/ES M12x50, E/ES M12x80, E/ES M16x65, E/ES M16x80, E M20x80              |  |  |  |  |  |  |  |
|                                    | hochkorrosionsbeständiger Stahl (Prägung HCR): in Innen- und Außenbereichen unter besonders aggressive Bedingungen enthaltene Größen: E/ES M6x30, E/ES M8x30, E/ES M8x40, E/ES M10x40, E/ES M12x50, E/ES M12x80, E/ES M16x65, E/ES M16x80, E M20x80 |  |  |  |  |  |  |  |
| Temperaturbereich (gegebenenfalls) |                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |

4. Name, eingetragener Handelsname oder eingetragene Marke und Kontaktanschrift des Herstellers gemäß Artikel 11 Absatz 5:

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 D - 67685 Weilerbach

- 5. Gegebenenfalls Name und Kontaktanschrift des Bevollmächtigten, der mit den Aufgaben gemäß Artikel 12 Absatz 2 beauftragt ist: --
- 6. System oder Systeme zur Bewertung und Überprüfung der Leistungsbeständigkeit des Bauprodukts gemäß Anhang V: System 1
- 7. Im Falle der Leistungserklärung, die ein Bauprodukt betrifft, das von einer harmonisierten Norm erfasst wird:

- 1 - 23.12.2014

8. Im Falle der Leistungserklärung, die ein Bauprodukt betrifft, für das eine Europäische Technische Bewertung ausgestellt worden ist:

Deutsches Institut für Bautechnik, Berlin

hat folgendes ausgestellt:

ETA-02/0020

auf der Grundlage von

**ETAG 001-4** 

Die notifizierte Produktzertifizierungsstelle 1343-CPR hat nach dem System 1 vorgenommen:

- Feststellung des Produkttyps anhand einer Typprüfung (einschließlich Probenahme), einer Typberechnung, von Werttabellen oder Unterlagen zur Produktbeschreibung;
- ii) Erstinspektion des Werks und der werkseigenen Produktionskontrolle;
- iii) laufende Überwachung, Bewertung und Evaluierung der werkseigenen Produktionskontrolle

und Folgendes ausgestellt: Konformitätszertifikat 1343-CPR-M 550-2

### 9. Erklärte Leistung:

| Wesentliche Merkmale                 | Bemessungsmethode  | Leistung                  | Harmonisierte<br>technische<br>Spezifikation |  |  |
|--------------------------------------|--------------------|---------------------------|----------------------------------------------|--|--|
| Charakteristischer Widerstand bei    | ETAG 001, Anhang C | FTA 00/0000 A 1 04 00     |                                              |  |  |
| Zugbeanspruchung                     | CEN/TS 1992-4      | ETA-02/0020, Anhang C1-C2 |                                              |  |  |
| Charakteristischer<br>Widerstand bei | ETAG 001, Anhang C | FTA 00/0000 A I 00 04     |                                              |  |  |
| Querbeanspruchung                    | CEN/TS 1992-4      | ETA-02/0020, Anhang C3-C4 | ETAG 001                                     |  |  |
| Verschiebung im                      | ETAG 001, Anhang C | ETA 02/0020 Anhana CE     |                                              |  |  |
| Gebrauchszustand                     | CEN/TS 1992-4      | ETA-02/0020, Anhang C5    |                                              |  |  |

Wenn gemäß den Artikeln 37 oder 38 die Spezifische Technische Dokumentation verwendet wurde, die Anforderungen, die das Produkt erfüllt: --

10. Die Leistung des Produkts gemäß den Nummern 1 und 2 entspricht der erklärten Leistung nach Nummer 9. Verantwortlich für die Erstellung dieser Leistungserklärung ist allein der Hersteller gemäß Nummer 4. Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Lore Weustenhagen (Geschäftsführerin) Weilerbach, 23.12.2014 **Dipl.-Ing. Detlef Bigalke** (Leiter der Produktentwicklung)

Bigalle



**Tabelle C1:** Charakteristische Werte bei **Zugbeanspruchung, verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

| Dübelgröße                                      |                                              |      | M6x30 <sup>1)</sup> | M8x30 <sup>1)</sup> | M8x40                                       | M10x30 <sup>1)</sup> | M10x40 | M12x50<br>M12x80 | M16x65<br>M16x80 | M20x80 |
|-------------------------------------------------|----------------------------------------------|------|---------------------|---------------------|---------------------------------------------|----------------------|--------|------------------|------------------|--------|
| Montagesicherheitsbeiwert                       | γ2                                           | [-]  |                     |                     |                                             | 1,                   | 2      |                  |                  |        |
| Stahlversagen                                   |                                              |      |                     |                     |                                             |                      |        |                  |                  |        |
| Charakteristische Zugtragfäh<br>Stahl 4.6       | nigkeit N <sub>Rk,s</sub>                    | [kN] | 8,0                 | 14,                 | 6                                           | 23,                  | 2      | 33,7             | 62,8             | 98,0   |
| Teilsicherheitsbeiwert                          | γMs                                          | [-]  |                     |                     |                                             | 2,                   | 0      |                  |                  |        |
| Charakteristische Zugtragfäh<br>Stahl 5.6       | nigkeit N <sub>Rk,s</sub>                    | [kN] | 10,0                | 18,                 | 3                                           | 18,0                 | 20,2   | 42,1             | 78,3             | 122,4  |
| Teilsicherheitsbeiwert                          | γMs                                          | [-]  |                     | 2,0                 |                                             | 1,                   | 5      |                  | 2,0              |        |
| Charakteristische Zugtragfäh<br>Stahl 5.8       | nigkeit N <sub>Rk,s</sub>                    | [kN] | 10,0                | 17,6                | 18,3                                        | 18,0                 | 20,2   | 42,1             | 67,1             | 106,4  |
| Teilsicherheitsbeiwert                          | γMs                                          | [-]  |                     |                     | 1                                           | ,5                   |        |                  | 1,6              |        |
| Charakteristische Zugtragfäh<br>Stahl 8.8       | nigkeit N <sub>Rk,s</sub>                    | [kN] | 15,0                | 17,6                | 19,9                                        | 18,0                 | 20,2   | 43,0             | 67,1             | 106,4  |
| Teilsicherheitsbeiwert                          | γMs                                          | [-]  |                     |                     | 1                                           | ,5                   |        |                  | 1,               | 6      |
| Herausziehen                                    |                                              |      |                     |                     |                                             |                      |        |                  |                  |        |
| Charakteristische Tragfähigk<br>im Beton C20/25 | eit N <sub>Rk,p</sub>                        | [kN] | 2)                  | 2)                  | 9                                           | 2)                   | 2)     | 2)               | 2)               | 2)     |
| Erhöhungsfaktor für N <sub>Rk,p</sub>           | ψc                                           | [-]  |                     |                     | $\left(\frac{f_{ck,cube}}{25}\right)^{0,3}$ |                      |        |                  |                  |        |
| Betonausbruch und Spalte                        | en                                           |      |                     |                     |                                             |                      |        |                  |                  |        |
| Verankerungstiefe                               | h <sub>ef</sub>                              | [mm] | 30                  | 30                  | 40                                          | 30                   | 40     | 50               | 65               | 80     |
| Achsabstand<br>(Randabstand)                    | s <sub>cr,N</sub> (= 2 c <sub>cr,N</sub> )   | [mm] |                     |                     |                                             | 3 h <sub>ef</sub>    |        |                  |                  |        |
|                                                 | s <sub>cr,sp</sub> (= 2 c <sub>cr,sp</sub> ) | [mm] | 190                 | 190                 | 190                                         | 230                  | 270    | 330              | 400              | 520    |
| Faktor für ungerissenen Beto                    | on k <sub>ucr</sub>                          | [-]  |                     |                     |                                             | 10,1                 |        |                  |                  |        |

 $<sup>^{\</sup>rm 1)}$  Nur zur Verwendung in statisch unbestimmten Systemen und in trockenen Innenräumen

# Einschlaganker E / ES

### Leistung

Charakteristische Werte bei **Zugbeanspruchung, verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

**Anhang C1** 

<sup>2)</sup> Herausziehen ist nicht maßgebend

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl A4, HCR (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

| Dübelgröße                                             |                                              |      | M6x30 <sup>1)</sup> | M8x30 <sup>1)</sup> | M8x40                                       | M10x40            | M12x50<br>M12x80 | M16x65<br>M16x80 | M20x80 |
|--------------------------------------------------------|----------------------------------------------|------|---------------------|---------------------|---------------------------------------------|-------------------|------------------|------------------|--------|
| Montagesicherheitsbeiwert                              | γ2                                           | [-]  |                     |                     |                                             | 1,0               |                  |                  |        |
| Stahlversagen                                          |                                              |      |                     |                     |                                             |                   |                  |                  |        |
| Charakteristische Zugtragfähigk (Festigkeitsklasse 70) | eit N <sub>Rk,s</sub>                        | [kN] | 14,1                | 23,                 | 3                                           | 29,4              | 50,2             | 83,8             | 133,0  |
| Charakteristische Zugtragfähigk (Festigkeitsklasse 80) | eit N <sub>Rk,s</sub>                        | [kN] | 17,5                | 23,                 | 3                                           | 29,4              | 50,2             | 83,8             | 133,0  |
| Teilsicherheitsbeiwert                                 | γ <sub>Ms</sub> <sup>3)</sup>                | [-]  |                     |                     |                                             | 1,87              |                  |                  |        |
| Herausziehen                                           |                                              |      |                     |                     |                                             |                   |                  |                  |        |
| Charakteristische Tragfähigkeit<br>Beton C20/25        | im N <sub>Rk,p</sub>                         | [kN] | 2)                  | 2)                  | 9                                           | 2)                | 2)               | 2)               | 2)     |
| Erhöhungsfaktor für N <sub>Rk,p</sub>                  | ψc                                           | [-]  |                     |                     | $\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$ |                   |                  |                  |        |
| Betonausbruch und Spalten                              |                                              |      |                     |                     |                                             |                   |                  |                  |        |
| Verankerungstiefe                                      | h <sub>ef</sub>                              | [mm] | 30 <sup>3)</sup>    | 30                  | 40                                          | 40                | 50               | 65               | 80     |
| Achsabstand (Randabstand)                              | s <sub>cr,N</sub> (= 2 c <sub>cr,N</sub> )   | [mm] |                     |                     |                                             | 3 h <sub>ef</sub> |                  |                  |        |
|                                                        | s <sub>cr,sp</sub> (= 2 c <sub>cr,sp</sub> ) | [mm] | 160                 | 190                 | 190                                         | 270               | 330              | 400              | 520    |
| Faktor für ungerissenen Beton                          | k <sub>ucr</sub>                             | [-]  |                     |                     |                                             | 10,1              |                  |                  |        |

<sup>1)</sup> Nur zur Verwendung in statisch unbestimmten Systemen und in trockenen Innenräumen

## Einschlaganker E / ES

### Leistung

Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl A4, HCR (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

 $<sup>^{2)}</sup>$  Herausziehen ist nicht maßgebend

<sup>&</sup>lt;sup>3)</sup> Beim Nachweis gegen Betonversagen nach ETAG 001, Anhang C oder CEN/TS 1992-4-4 ist N<sup>0</sup><sub>Rk,c</sub> mit dem Faktor (25/f<sub>ck,cube</sub>)<sup>0,2</sup> zu multiplizieren.

**Tabelle C3:** Charakteristische Werte bei **Querbeanspruchung, verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

|                                              |                        |      | M6x30 | M8x30 | M8x40 | M10x30 | M10x40   | M12x80 | M16x65<br>M16x80 | M20x80 |
|----------------------------------------------|------------------------|------|-------|-------|-------|--------|----------|--------|------------------|--------|
| Stahlversagen ohne Hebelarm                  |                        |      |       |       |       |        | <u> </u> | WILKOU | III TOXOO        |        |
| Charakteristische Tragfähigkeit<br>Stahl 4.6 | $V_{Rk,s}$             | [kN] | 4,0   | 7,    | ,3    | 11,6   | 9,6      | 16,8   | 31,3             | 49,0   |
| Teilsicherheitsbeiwert                       | γMs                    | [-]  |       |       |       | 1      | ,67      |        |                  |        |
| Charakteristische Tragfähigkeit<br>Stahl 5.6 | $V_{Rk,s}$             | [kN] | 5,0   | 9,    | ,1    | 10,1   | 9,6      | 21,1   | 39,2             | 61,2   |
| Teilsicherheitsbeiwert                       | γMs                    | [-]  |       | 1,67  |       | 1,25   |          | 1,     | 67               |        |
| Charakteristische Tragfähigkeit Stahl 5.8    | $V_{Rk,s}$             | [kN] | 5,0   | 6.    | ,9    | 10,1   | 7,2      | 21,1   | 33,5             | 53,2   |
| Teilsicherheitsbeiwert                       | γMs                    | [-]  |       |       | 1,    | .25    |          |        | 1,               | 33     |
| Charakteristische Tragfähigkeit Stahl 8.8    | $V_{Rk,s}$             | [kN] | 5,0   | 6.    | ,9    | 10,1   | 7,2      | 21,5   | 33,5             | 53,2   |
| Teilsicherheitsbeiwert                       | γMs                    | [-]  |       | 1,25  |       |        |          | 1,     | 1,33             |        |
| Duktilitätsfaktor                            | $k_2$                  | [-]  |       | 1,0   |       |        |          |        |                  |        |
| Stahlversagen mit Hebelarm                   |                        |      |       |       |       |        |          |        |                  |        |
| Charakteristisches Biegemoment Stahl 4.6     | ${\sf M}^0_{\sf Rk,s}$ | [Nm] | 6,1   | 1     | 5     | 30     | 30       | 52     | 133              | 259    |
| Teilsicherheitsbeiwert                       | γMs                    | [-]  | 1,67  |       |       |        |          |        |                  |        |
| Charakteristisches Biegemoment<br>Stahl 5.6  | ${\sf M^0}_{\sf Rk,s}$ | [Nm] | 7,6   | 1     | 9     | 37     | 37       | 65     | 166              | 324    |
| Teilsicherheitsbeiwert                       | γMs                    | [-]  |       |       |       | 1,     | 67       |        |                  |        |
| Charakteristisches Biegemoment<br>Stahl 5.8  | $M^0_{Rk,s}$           | [Nm] | 7,6   | 1     | 9     | 37     | 37       | 65     | 166              | 324    |
| Teilsicherheitsbeiwert                       | γMs                    | [-]  |       |       |       | 1,     | 25       |        |                  |        |
| Charakteristisches Biegemoment Stahl 8.8     | $M^0_{Rk,s}$           | [Nm] | 12    | 3     | 0     | 59     | 60       | 105    | 266              | 519    |
| Teilsicherheitsbeiwert                       | γMs                    | [-]  |       |       |       | 1,     | 25       |        |                  |        |
| Duktilitätsfaktor                            | $k_2$                  | [-]  |       |       |       | 1,     | 0        |        |                  |        |
| Betonausbruch auf der lastabgewandt          | ten Seite              |      |       |       |       |        |          |        |                  |        |
| k-Faktor                                     | <b>k</b> (3)           | [-]  |       |       | 1,0   |        |          | 1,5    | 2,               | 0      |
| Betonkantenbruch                             |                        |      |       |       |       |        |          |        |                  |        |
| Wirksame Dübellänge bei Querlast             | lf                     | [mm] | 30    | 30    | 40    | 30     | 40       | 50     | 65               | 80     |
| Wirksamer Außendurchmesser                   | $d_{nom}$              | [mm] | 8     | 10    | 10    | 12     | 12       | 15     | 20               | 25     |

|       |      | -      | _ |      |
|-------|------|--------|---|------|
| Fined | :hla | ganker | F | / FS |

## Leistung

Charakteristische Werte bei **Querbeanspruchung, verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

**Tabelle C4:** Charakteristische Werte bei **Querbeanspruchung, nichtrostender Stahl A4, HCR** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

| Dübelgröße                                                  |                       |      | M6x30 | M8x30 | M8x40 | M10x40 | M12x50<br>M12x80 | M16x65<br>M16x80 | M20x80 |
|-------------------------------------------------------------|-----------------------|------|-------|-------|-------|--------|------------------|------------------|--------|
| Stahlversagen ohne Hebelarm                                 |                       |      |       |       |       |        |                  |                  |        |
| Charakteristisches Quertragfähigkeit (Festigkeitsklasse 70) | $V_{Rk,s}$            | [kN] | 7,0   | 10,   | 6     | 13,4   | 25,1             | 41,9             | 66,5   |
| Charakteristisches Quertragfähigkeit (Festigkeitsklasse 80) | $V_{Rk,s}$            | [kN] | 8,7   | 10,   | 6     | 13,4   | 25,1             | 41,9             | 66,5   |
| Teilsicherheitsbeiwert                                      | γMs                   | [-]  |       |       |       | 1,56   |                  |                  |        |
| Duktilitätsfaktor                                           | <b>k</b> <sub>2</sub> | [-]  |       |       |       | 1,0    |                  |                  |        |
| Stahlversagen ohne Hebelarm                                 |                       |      |       |       |       |        |                  |                  |        |
| Charakteristisches Biegemoment (Festigkeitsklasse 70)       | $M^0$ Rk,s            | [Nm] | 11    | 2     | 6     | 52     | 92               | 233              | 454    |
| Teilsicherheitsbeiwert                                      | γMs                   | [-]  | 1,56  |       |       |        |                  |                  |        |
| Charakteristisches Biegemoment (Festigkeitsklasse 80)       | M <sup>0</sup> Rk,s   | [Nm] | 12    | 3     | 0     | 60     | 105              | 266              | 519    |
| Teilsicherheitsbeiwert                                      | γMs                   | [-]  |       |       |       | 1,33   |                  |                  |        |
| Duktilitätsfaktor                                           | k <sub>2</sub>        | [-]  |       |       |       | 1,0    |                  |                  |        |
| Betonausbruch auf der lastabgewand                          | ten Seite             |      |       |       |       |        |                  |                  |        |
| k- Faktor                                                   | k <sub>(3)</sub>      | [-]  | 1,0   | 1,    | 7     | 1,     | ,7               | 2,               | 0      |
| Betonkantenbruch                                            |                       | •    |       |       |       | •      |                  | •                |        |
| Wirksame Dübellänge bei Querlast                            | lf                    | [mm] | 30    | 30    | 40    | 40     | 50               | 65               | 80     |
| Wirksamer Außendurchmesser                                  | d <sub>nom</sub>      | [mm] | 8     | 10    | 10    | 12     | 15               | 20               | 25     |

| Einsc | hlagg | nkor  | EC  |
|-------|-------|-------|-----|
| EINSC | niada | ınker | E 2 |

#### Leistuna

Charakteristische Werte bei **Querbeanspruchung, nichtrostender Stahl A4, HCR** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

**Anhang C4** 

Tabelle C5: Verschiebungen unter Zuglast

| Dübelgröße                    |                 |      | M6x30 | M8x30 | M8x40 | M10x30 | M10x40 | M12x50<br>M12x80 | M16x65<br>M16x80 | M20x80 |
|-------------------------------|-----------------|------|-------|-------|-------|--------|--------|------------------|------------------|--------|
| Stahl galvanisch verzinkt     |                 |      |       |       |       |        |        |                  |                  |        |
| Zuglast im ungerissenen Beton | N               | [kN] | 3     | 3     | 3,6   | 3,3    | 4,8    | 6,4              | 10               | 14,8   |
| Verschiebung                  | δηο             | [mm] | 0,24  |       |       |        |        |                  |                  |        |
|                               | δ <sub>N∞</sub> | [mm] |       |       |       | 0,     | 36     |                  |                  |        |
| Nichtrostender Stahl A4 / HCR |                 |      |       |       |       |        |        |                  |                  |        |
| Zuglast im ungerissenen Beton | N               | [kN] | 4     | 4     | 4,3   | -      | 6,1    | 8,5              | 12,6             | 17,2   |
| Verschiebung                  | δηο             | [mm] | 0,12  |       |       |        |        |                  |                  |        |
|                               | δ <sub>N∞</sub> | [mm] |       |       |       | 0,     | 24     |                  |                  |        |

# Tabelle C6: Verschiebungen unter Querlast

| Dübelgröße                     |     |      | M6x30 | M8x30 | M8x40 | M10x30 | M10x40 |      | M16x65<br>M16x80 | M20x80 |
|--------------------------------|-----|------|-------|-------|-------|--------|--------|------|------------------|--------|
| Stahl galvanisch verzinkt      |     |      |       |       |       |        |        |      |                  |        |
| Querlast im ungerissenen Beton | ٧   | [kN] | 2     | 4     | 4     | 5,7    | 4,0    | 11,3 | 18,8             | 32,2   |
| Verschiebung                   | δνο | [mm] | 0,9   | 0,9   | 1,0   | 1,5    | 0,6    | 1,2  | 1,2              | 1,6    |
|                                | δγ∞ | [mm] | 1,3   | 1,3   | 1,5   | 2,3    | 0,9    | 1,9  | 1,9              | 2,4    |
| Nichtrostender Stahl A4 / HCR  |     |      |       |       |       |        |        |      |                  |        |
| Querlast im ungerissenen Beton | V   | [kN] | 3,5   | 5,2   | 5,2   | -      | 6,5    | 11,5 | 19,2             | 30,4   |
| Verschiebung                   | δνο | [mm] | 1,9   | 1,1   | 0,7   | -      | 1,0    | 1,7  | 2,4              | 2,6    |
|                                | δγ∞ | [mm] | 2,8   | 1,6   | 1,0   | -      | 1,5    | 2,6  | 3,6              | 3,8    |

| Einsch | lagan | ker E | / ES |
|--------|-------|-------|------|
|--------|-------|-------|------|